FURTHER STRUCTURAL STUDIES OF ANTI-COMPLEMENTARY ACIDIC HETEROGLYCANS FROM THE LEAVES OF *Panax ginseng* C. A. MEYER

QI-PIN GAO*, HIROAKI KIYOHARA, AND HARUKI YAMADA†

Oriental Medicine Research Center of the Kitasato Institute, Minato-ku, Tokyo 108 (Japan)
(Received April 18th, 1989; accepted for publication, June 26th, 1989)

ABSTRACT

The three potent anti-complementary polysaccharides, GL-PI, GL-PII, and GL-PIV, isolated from the leaves of *Panax ginseng* C. A. Meyer, were subjected to base-catalysed β -elimination in the presence of sodium borodeuteride or enzymic digestion with endo- α -D-(1 \rightarrow 4)-polygalacturonase. β -Eliminative degradation of GL-PI and GL-PII each gave neutral (IN and IIN) and acidic (IA and IIA) fractions. Each fraction N consisted of Ara, Rha, Gal, and Glc, whereas each fraction A comprised a large proportion of GalA in addition to Rha, Gal, Glc, and GlcA. Methylation analysis and g.l.c.-m.s. showed that each fraction IN and IIN contained Rha-(1 \rightarrow 2)-Rha-ol-1-d, Rha-(1 \rightarrow 4)-Rha-ol-1-d, Ara-(1 \rightarrow 4)-Rha-ol-1-d, Gal-(1 \rightarrow 4)-Rha-ol-1-d, and GlcA-(1 \rightarrow 4)-Rha-ol-1-d, and that IA and IIA contained Rha \rightarrow Rha-ol-1-d, HexA \rightarrow Rha-ol-1-d, and HexA \rightarrow Rha-ol-1-d. Methylation analysis indicated that IN and IIN also contained high-molecular-weight 6-linked galactan and 4-linked glucan, and that IA and IIA consisted mainly of 2-linked Rha, 4-linked GalA, and terminal and 6-linked Gal. IIA contained more 2-linked Rha than IA.

Endo- α -D-(1 \rightarrow 4)-polygalacturonase-mediated digestion of GL-PIV produced a high-molecular-weight fraction (PG-1) which was rich in neutral sugars, fragments of intermediate size (PG-2), and oligosaccharides (PG-3). PG-1 contained a rhamnogalacturonan core, galactan (which mainly comprised terminal, 6-linked, and 4,6-disubstituted Gal), and 4-linked glucans. PG-2 contained (1 \rightarrow 4)-linked α -galacturonan partially branched at position 2 or 3 and a rhamnogalacturonan core in addition to small proportions of Gal and Glc. PG-3 contained large proportions of oligogalacturonides.

^{*}Present address: Academy of Traditional Chinese Medicine and Material Medica of Jilin Province, Chang Chun, Jilin Province, China.

[†]Author for correspondence.

INTRODUCTION

Four heteroglycans (GL-PI-PIV) have been purified¹ from the leaves of *P. ginseng*. GL-PI, GL-PII, and GL-PIV showed¹ high anti-complementary activities, whereas GL-PIII had low activity. GL-PI, GL-PII, and GL-PIV each appear¹ to consist of a rhamnogalacturonan backbone with side chains mostly at position 4 of 2-linked Rha, whereas GL-PIII consists of a core of rhamnogalacturonan and 2,4-or 3,4-branched GalA with side chains attached mostly at position 2 or 3 of 4-linked GalA.

Several anti-complementary pectic polysaccharides have been purified from Chinese herbs²⁻⁵ and the side chains may be involved in the expression of the anti-complementary activity^{6,7}.

We now report further on the structures of the neutral side-chains in GL-PI, GL-PII, and GL-PIV.

EXPERIMENTAL

Materials. — The leaves of *P. ginseng* C. A. Meyer, which were cultivated in Jilin, were collected on Chang Bai mountain (China). The fraction (GL-3) of highest anti-complementary activity was prepared by hot-water extraction, and precipitations with ethanol and Cetavlon (cetyltrimethylammonium bromide). GL-3 was fractionated further on DEAE-Sephadex A-50, DEAE-TOYOPEARL 650C, and Sepharose CL-6B to give¹ GL-PI, GL-PII, and GL-PIV. DEAE-Sephadex A-25 and Sephadex G-50 and LH-20 were purchased from Pharmacia, and Bio-Gel P-6 (-400 mesh), P-4 (-400 mesh), and P-2 (200-400 mesh) from Bio-Rad. Pectinase from *Aspergillus niger* was purchased from Sigma, and endo- α -($1\rightarrow$ 4)-polygalacturonase was purified by the method of Thibault and Mercier⁸.

General methods. — Carbohydrate, uronic acid, and 4,5-unsaturated uronic acid were assayed using phenol–sulfuric acid⁹, m-hydroxylbiphenyl¹⁰, and λ_{max} at 235 nm¹¹, respectively. Each sample was hydrolysed with 2M trifluoroacetic acid for 1.5 h at 121°, and t.l.c. of each hydrolysate was performed on cellulose, using ethyl acetate–pyridine–acetic acid–water (5:5:1:3). Reducing sugars and uronic acids were detected with alkaline silver nitrate¹² and p-anisidine hydrochloride¹³. Neutral sugars and uronic acids were converted into the corresponding alditol acetates¹⁴ and analysed by g.l.c. G.l.c. was carried out at 190° using a Shimadzu GC-6A gas chromatograph equipped with a flame-ionisation detector and a glass column (3 mm i.d. × 200 cm) packed with 1% of OV-225 on Uniport HP. The molar ratios were calculated from the peak areas and molecular weights of the corresponding alditol acetates.

Fragmentation of the acidic moiety in GL-PI and -PII. — GL-PI (20 mg) and GL-PII (25 mg) were each esterified with diazomethane, then subjected to base-catalysed β -elimination in the presence of sodium borodeuteride¹⁵. The procedure was repeated 7 times. The final products were fractionated on DEAE-Sephadex

A-25 (HCOO⁻ form), and the neutral [IN (2.1 mg) and IIN (2.8 mg)] and acidic [IA (10.5 mg) and IIA (9.2 mg)] fractions were obtained by elution with water and 5m HCOOH, respectively.

Enzymic digestion of GL-PIV. — To a solution of GL-PIV (6.4 mg) in 20mm acetate buffer (pH 4.2, 3 mL) was added endo- α -(1 \rightarrow 4)-polygalacturonase (350 nkat) from A. niger. After incubation at 30° for 2 days, the mixture was neutralised with aq. 0.5% NaOH, boiled for 5 min, then fractionated on a column (1.9 \times 95 cm) of Sephadex G-50 to give PG-1-3.

Carboxyl-reduction of PG-3. — PG-3 (1.5 mg) was reduced with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide (EDC) and sodium borodeuteride in deuterium oxide according to the modified procedure 16 of Taylor and Conrad 17 . The product was desalted with AG50W-X8 (H $^{+}$) resin, applied to a column (1 × 45 cm) of Bio-gel P-2 equilibrated with 0.2M acetate buffer (pH 5.6), and eluted with the buffer to give fractions of high (PG-3H) and low (PG-3L) molecular weight.

Methylation analysis. — Each dried sample was methylated once by the method of Hakomori¹⁸ in order to prevent β -elimination, and the completeness of formation of alkoxide was checked by using triphenylmethane¹⁹. The methylated product was purified²⁰ using a Sep-pak C_{18} cartridge (Waters Assoc.).

- (a) Methylated IN and IIN were each fractionated on a column $(1 \times 25 \text{ cm})$ of Sephadex LH-20, using chloroform-methanol (1:1). The fractions of high and low molecular weight were assayed with the 1-naphthol-sulfuric acid reagent²¹.
- (b) The methylated fractions containing uronic acid were carboxyl-reduced²⁰ with sodium borodeuteride in tetrahydrofuran-aq. 95% ethanol (7:3) for 18 h at room temperature followed by incubation for 1 h at 75°. The products were desalted with AG50W-X8 (H⁺) resin, then remethylated, and the methylated oligoglycosylalditols were fractionated on Sephadex LH-20, as described above, to give the fractions of high and low molecular weight.

The methylated products were hydrolysed with 2M trifluoroacetic acid for 1.5 h at 121°, and the products were reduced by sodium borohydride in aq. 95% ethanol containing M ammonium hydroxide for 3 h at room temperature, then converted into the partially methylated alditol acetates, and analysed²² by g.l.c. and g.l.c.-m.s. on a SPB-1 capillary column (0.25- μ m film thickness, 30 m × 0.25 mm i.d., SUPELCO).

G.l.c.-m.s. of methylated oligoglycosylalditols. — G.l.c.-m.s. involved a SPB-1 capillary column (splitless injection and a temperature programme of $180^{\circ} \rightarrow 310^{\circ}$ at 2-4°/min) and a JEOL DX-300 mass spectrometer [e.i. at 70 eV with an ionisation current of 300 μ A, and c.i. (isobutane) at 250 eV and an accelerating voltag of 3kV]. C.i.²³ and e.i. fragment ions [A, J, and alditol (ald)]²⁴ were used to determine the structures of the methylated oligoglycosylalditols.

High-resolution e.i.-m.s. (70 eV) was performed with a JEOL DX-303 mass spectrometer equipped with a DA-5000 computer system. Samples were separated on a DB-1 megabore column (15 m, J and W Scientific Inc.).

RESULTS

Base-catalysed B-elimination of GL-PI and GL-PII. - Previous results indicated that GL-PI and -PII contained a large rhamnogalacturonan moiety, but little polygalacturonan; therefore, methyl-esterified GL-PI and GL-PII were subjected to base-catalysed β -elimination in the presence of sodium borodeuteride¹⁵. Each product was fractionated on DEAE-Sephadex A-25 to give neutral (IN from GL-PI and IIN from GL-PII) and acidic (IA from GL-PI and IIA from GL-PII) fractions (Fig. 1). IN and IIN consisted of Ara, Rha, Gal, and Glc in the molar ratios 0.1:0.2:1.0:0.3 and trace:0.1:1.0:0.3, respectively. IA and IIA contained Rha, Gal, and Gle in the molar ratios 1.0:0.3:0.2 and 1.0:0.4:0.2, in addition to GalA and GlcA in the molar ratios 2.0:1.0 and 2.1:1.0, respectively. When each acidic fraction was subjected to base-catalysed β -elimination, no neutral fractions were obtained (data not shown). Fractions IA and IIA were each eluted from a column of Bio-gel P-4 with 0.2m sodium acetate buffer (pH 5.6) (Fig. 2). The main part of the carbohydrate was eluted in the void volume and the 4,5-unsaturated uronic acid $(\lambda_{\text{max}} 235 \text{ nm})$ between the void to the included volumes (Fig. 2). Fractions IA1-2 and IIA1-2 were obtained from IA and IIA, respectively. Fractions IA1 and IIA1

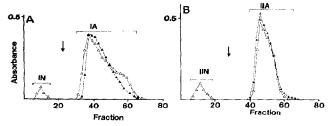


Fig. 1. Chromatography on DEAE-Sephadex of the products obtained from methyl-esterified GL-PI (A) and GL-PII (B) by base catalysed β -elimination. The acidic fractions were eluted with 5M HCOOH at the position of the arrow: Δ , carbohydrate (490 nm); Δ , uronic acid (520 nm).

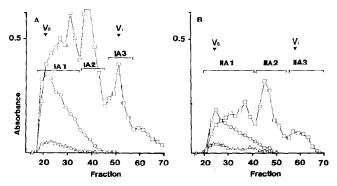


Fig. 2. Gel filtration of the acidic fractions IA and IIA from Fig. 1 on Bio-gel P-4: ○, carbohydrate (490 nm); △, uronic acid (520 nm); □, 235 nm; Vo, void volume; Vi, included volume.

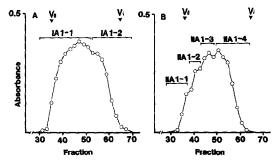


Fig. 3. Gel filtration of IA1 and IIA1 from Fig. 2 on Bio-gel P-6: O, carbohydrate (490 nm).

were each fractionated on Bio-gel P-6 to give IA1-1-2 and IIA1-1-4, respectively (Fig. 3). IA1-1-2 and IIA1-1-4 consisted of Rha, Gal, and Glc in the molar ratios 4.2:1.0:trace, 3.9:1.0:0.4, 2.0:1.0:trace, 3.4:1.0:nil, 1.3:1.0:0.3, and 2.2:1.0:0.4, respectively, in addition to GalA. IA1-1-2 and IIA1-3-4 also contained GlcA.

Analysis of the neutral fractions IN and IIN. — Each fraction was methylated and the products were fractionated on Sephadex LH-20 to give the fractions of high (INH and IINH) and low molecular weight (INL and IINL). Methylation analysis (Table I) showed that INH and IINH mainly contained terminal and 6-linked Gal, and terminal and 4-linked Glc; branched Rha could not be detected. INL and IINL mainly contained terminal, 4-, 3-, and 6-linked Gal, and terminal Glc in addition to

Glycosyl	Position of	Position of	Deduced	Comp	osition (mol %)	
residue	OMe groups	deuterium	glycosidic linkages	INH	INL	IINH	IINL
Ara	2,3,5		terminal (furanosyl)	1.8	4.3	0.9	0.7
	2,3		4 or 5	n.d.a	5.5	n.d.	2.2
Rha	2,3,4		terminal	1.7	5.1	1.3	1.2
	3,4		2	n.d.	7.9	n.d.	6.5
	3		2,4	n.d.	1.1	n.d.	0.5
Gal	2,3,4,6		terminal	16.5	19.3	9.2	13.8
	2,3,6		4	5.5	9.5	5.0	19.0
	2,3,4		6	36.8	10.7	40.3	16.1
	2,4,6		3	n.d.	8.9	n.d.	10.2
	2,3		4,6	2.5	5.5	3.1	3.6
	2,4		3,6	n.d.	n.d.	2.8	n.d.
Glc	2,3,4,6		terminal	11.9	11.5	9.2	19.3
	2,3,6		4	9.0	n.d.	11.0	n.d.
	2,3		4,6	2.5	n.d.	3.4	n.d.
GalA	2,3,6	$6,6-d_2$	4	4.3	7.3	2.3	5.0
GlcA	2,3,4,6	$6,6-d_2$	terminal	1.3	2.2	n.d.	1.2
	2,3,6	$6,6-d_2$	4	1.0	n.d.	0.6	n.d.

[&]quot;Not detected.

TABLE II

DIAGNOSTICTONS IN C.L.- AND E.L.-M.S. OF METHYLATED MONOGLYCOSYLALDITOLS OF INL AND IINL

mon men	- Monoglycosylalditol	C.i. (relative abundance)	ive abun	dance)			E.i. (n	E.i. (relative abundance)	undance	()				
		(M+H) ⁺	aJ_2	aJ_2OH_2	bA_{j}	bA_2	$aJ_{_{I}}$	aJ_2	bA_I	bA_2	bA_3	ald		
INI. 1	Rha-(1>2)-Rha-ol-1-d	412	206	224	189	157	566	206	189	157	125	147	276	308
		<u>(</u> 2	(37)	(46)	(100)	(18)	(1)	(4)	(100)	(34)	(12)	4	(0.3)	(0.2)
7	Rha- $(1\rightarrow 4)$ -Rha-ol- I - d	412	206	224	189	157	566	506	188	157	125	134	321	352
		(2)	(37)	(46)	(100)	(18)	Ξ	4	(100)	(34)	(12)	4	(0.3)	(0.2)
m	Ara- $(1\rightarrow 4)$ -Rha-ol- I - d	398	206	224	175	143		206	175	143	111	134	275	350
		(1)	(19)	(17)	(100)	(28)		(14)	(73)	(100)	9	(12)	(0.2)	(1.2)
₹	$Gal-(1\rightarrow 4)$ -Rha-ol- $I-d$	442	206	224	219	187	566	206	219	187		134	307	
		(4)	(14)	(19)	(100)	(86)	8	9	(53)	(100)		(21)	(0.7)	
w	$Gal-(1\rightarrow 6)-Gal-ol-I-d$	472	236	254	219	187	596	236	219	187	155	134	261	293
		(14)	8	(100)	(53)	(86)	(5)	(52)	(11)	(100)	(32)	4	(0.0)	(0.5)
IINL 6	Rha- $(1\rightarrow 2)$ -Rha-ol- I - d	412	206	224	189	157	506	206	189	157	125	147	564	276
		(9)	(35)	(52)	(100)	(15)	(2)	(100)	(100)	(83)	(56)	(10)	(0.5)	Ξ
-	Rha-(1→4)-Rha-ol-1-d	412	206	224	189	157	592	506	189	157	125	134	321	277
		9	(35)	(52)	(100)	(100)	(5)	(100)	(100)	(87)	(56)	(10)	(0.5)	Ξ
œ	Ara- $(1\rightarrow 4)$ -Rha-ol- I - d	398	206	224	175	143	992	206	175	143		13	231	307
		(3)	(30)	(53)	(100)	(52)	(2)	(13)	(83)	(100)		(15)	(5)	(0.1)
6	GlcA- $(1\rightarrow 4)$ -Rha-ol- I - d	444	206	224	221	189	997	502	221	189		<u>13</u>	321	353
		(4)	(31)	(38)	8	(100)	9	(67)	9	(100)		(58)	(0.4)	(0.7)
10	$Gal-(1\rightarrow 4)$ -Rha-ol- $I-d$	442	206	224	219	187	566	206	219	187	155	134	307	382
! !		(4)	(15)	(24)	(100)	(79)	(16)	(100)	(44)	(100)	(45)	(33)	(0.5)	(0.5)

small proportions of terminal and 4- or 5-linked Ara; terminal, 2-linked, and 2,4-disubstituted Rha; and 4,6-disubstituted Gal. INH, INL, IINH, and IINL gave partially methylated galactitol-6,6- d_2 and glucitol-6,6- d_2 acetates. However, the carboxyl-reduction was not performed in the present methylation procedure, and, probably, these 6,6- d_2 derivatives were formed in the β -elimination.

C.i.-m.s. (Table II) showed that INL and IINL each contained five fragments (1-5 in INL and 6-10 in IINL), which were eluted in the region for glycosylalditols. Fragments 1, 2, 6, and 7 gave ions at m/z 412 [(M + H)⁺], 206 (aJ₂), and 189 (bA_1) ; 3 and 8 at m/z 398 [(M + H)⁺], 206 (aJ₂), and 175 (bA₁); 4 and 10 at m/z442 $[(M + H)^{+}]$, 206 (aJ_{2}) , and 219 (bA_{1}) ; 9 at m/z 444 $[(M + H)^{+}]$, 206 (aJ_{2}) , and 221 (bA₁); and 5 at m/z 472 [(M + H)⁺], 236 (aJ₂), and 219 (bA₁), suggesting the presence of the following units: 6-deoxyhexosyl \rightarrow 6-deoxyhexitol-1-d in 1, 2, 6, and 7, pentosyl \rightarrow 6-deoxyhexitol-1-d in 3 and 8, hexosyl \rightarrow 6-deoxyhexitol-1-d in 4 and 10, hexouronosyl \rightarrow 6-deoxyhexitol-1-d in 9, and hexosyl \rightarrow hexitol-1-d in 5. From e.i.-m.s. data and the retention times in g.l.c., 1 and 6 were identified as Rha- $(1\rightarrow 2)$ -Rha-ol-I-d, 2 and 7 as Rha- $(1\rightarrow 4)$ -Rha-ol-I-d, 3 and 8 as Ara- $(1\rightarrow 4)$ -Rhaol-1-d, 4 and 10 as Gal- $(1\rightarrow 4)$ -Rha-ol-1-d, and 5 as Gal- $(1\rightarrow 6)$ -Gal-ol-1-d. The fragment 9 was eluted faster than the standard glycosylalditol, $GalA-(1\rightarrow 4)$ -Rha-ol-1-d, and it was identified as GlcA-(1→4)-Rha-ol-1-d. Di- and tri-glycosylalditols were not detected because most of these oligoglycosylalditols are usually lost in splitless injection.

TABLE III

METHYLATION ANALYSIS OF THE ACIDIC FRACTIONS (IA1-2-HMW AND -LMW, AND IIA1-4-HMW AND -LMW) FROM GL-PI AND -PII

Glycosyl	Position of	Position of	Deduced	Comp	osition (mol %)	ol %)	
residue	OMe groups	deuterium	glycosidic linkages	IA1-2		IIA1-	4	
				Н	L	Ħ	L	
Ara	2,3,4		terminal (pyranosyl)	n.d.a	0.2	n.d.	n.d.	
Rha	1,3,4,5	1- <i>d</i>	2 (reducing terminal)	n.d.	1.7	n.d.	0.3	
	2,3,4		terminal	n.d.	16.6	3.1	10.8	
	3,4		2	3.9	12.9	10.9	10.1	
	3		2,4	n.d.	n.d.	n.d.	n.d.	
Gal	2,3,4,6		terminal	6.2	15.5	9.8	11.9	
	2,3,6		4	10.3	9.2	7.1	4.1	
	2,3,4		6	48.7	8.7	11.7	n.d.	
	2,3		4,6	n.d.	1.4	1.6	0.7	
	2,4		3,6	n.d.	n.d.	n.d.	n.d.	
Gle	2,3,4,6		terminal	n.d.	1.7	1.8	3.3	
GalA	2,3,4,6	$6,6-d_2$	terminal	n.d.	3.0	2.0	2.0	
	2,3,6	$6,6-d_2$	4	30.9	27.9	51.0	55.3	
GlcA	2,3,4,6	$6,6-d_2$	terminal	n.d.	1.7	0.9	1.7	

aNot detected.

TABLE IV	
METHYLATION ANALYSIS OF ACIDIC FRACTIONS (1A1-1, IIA1-1, IIA1-2, AND IIA1-3) FROM GL-1	PI AND -PII

Glycosyl	Position of	Position of	Deduced	Compo	osition (n	nol%)	
residue	OMe groups	deuterium	glycosidic linkages	IA1-1	IIA1-1	IIA1-2	IIA1-3
Rha	2,3,4		terminal	5.9	7.6	8.9	8.4
	3,4		2	10.4	8.1	22.0	20.4
	3		2,4	3.6	3.9	2.9	1.7
Gal	2,3,4,6		terminal	9.7	8.2	9.3	10.7
	2,3,6		4	8.6	5.3	6.4	8.1
	2,3,4		6	23.5	12.1	12.5	7.9
	2,3		4,6	$n.d.^a$	n.d.	n.d.	n.d.
	2,4		3,6	n.d.	5.9	n.d.	n.d.
Glc	2,3,4,6		terminal	n.d.	n.d.	n.d.	1.4
GalA	2,3,4	$6,6-d_2$	terminal	n.d.	n.d.	n.d.	2.2
	2,3	$6,6-d_2$	4	38.3	44.4	38.0	36.5
	2	$6,6-d_{2}$	3,4	n.d.	4.4	n.d.	n.d.
GlcA	2,3,4	$6,6-d_2$	terminal	n.d.	n.d.	n.d.	2.7

[&]quot;Not detected.

Analysis of the acidic fractions from GL-PI and GL-PII. — The acidic fractions IA1-1–2 and IIA1-1–4 were methylated and then carboxyl-reduced with sodium borodeuteride. The products from IA1-2 and IIA1-4 were remethylated and then fractionated on Sephadex LH-20 to give materials of high (IA1-2H and IIA1-4H) and low molecular weight (IA1-2L and IIA1-4L). Methylation analysis (Table III) showed that IA1-2H and IIA1-4H each contained mainly 4-linked GalA and 6-linked Gal. In addition, IA1-2H contained 4-linked Gal, whereas IIA1-4H contained terminal Gal and a larger proportion of 2-linked Rha than IA1-2H. IA1-2L and IIA1-4L mainly contained 4-linked GalA, terminal Gal, and terminal and 2-linked Rha. IA1-2L also contained 4-linked Gal, and IA1-2L and IIA1-4L contained a small proportion of 2-linked rhamnitol-1-d. Methylation analysis (Table IV) showed that IA1-1 and IIA1-1–3 mainly contained 4-linked GalA in addition to 2-linked Rha, and 6-linked and terminal Gal. IA1-1 and IIA1-3 also contained a large proportion of 4-linked Gal.

In g.l.c.-m.s. (Table V), methylated IA1-2L and IIA1-4L gave fragments (11 and 12 from IA1-2L, and 13 and 14 from IIA1-4L) which were eluted in the glycosylalditol region. C.i.-m.s. suggested 11 and 13 to contain a 6-deoxyhexosyl \rightarrow 6-deoxyhexitol-I-d unit, and 12 and 14 to contain a hexuronosyl \rightarrow 6-deoxyhexitol-I-d unit as described above. In e.i.-m.s., the fragment ions assigned to ald series could not be detected because of their low abundance, so that the glycosidic linkages were not identified. Since IA1-2L and IIA1-4L comprised 2-linked rhamnitol-I-d, 11 and 13 are Rha- $(1\rightarrow 2)$ -Rha-ol-I-d, and 12 and 14 are HexA- $(1\rightarrow 2)$ -Rha-ol-I-d. Fragments 11 and 13 might be formed from 4,5-unsaturated-GalA- $(1\rightarrow 2)$ -Rha-ol-I-d during the methylation because they were the ab-

TABLE V

DIAGNOSTIC IONS IN C.1.- AND E.L.-M.S. OF METHYLATED MONOGLYCOSYLALDITOLS FOR THE PRODUCTS (1A1-2L AND 11A1-4L) FROM GL-PI AND -PII

Fraction	Fragment	Monoglycosylalditol	C.i. (relativ	C.i. (relative abundance)	(a)				E.i. (r	E.i. (relative abundance)	undanc	6
			(M+H) ⁺	$(M+H)^+-aJ_2$ MeOH	aJ ₂	aJ ₂ OH ₂	bA_I	bA_2	aJ_1	aJ_2	bA_I	bA_2
IAI-2L	11	Rha→Rha-ol-1d	412		206	224	189		266	206	189	
			(19.0)		(71.0)	(32.0)	(100)		(3.0)	(100) (100)	(100)	
	12	HexA→Rha-ol- <i>I-d</i>		412	206	224	221	189	5 66	206	221	189
				(17.0)	(58.0)	(21.0)	(12.0)	(100)	(1.0)	(80.0)	(0.6)	(100)
IIA1-4L	13	Rha→Rha-ol-1-d	412		206	224	189		566	506	189	
			(19.0)		(0.09)	(4.0)	(100)		(4.0)	(100)	(97.0)	
	14	HexA-→Rha-ol-I-d		412	206	224	221	189	566	506	221	189
				(11.0)	(44.0)	(25.0)	(2.0)	(100)	(3.0)	(100)	(8.0)	(100)

This peak, when analysed by high-resolution mass spectrometry, had m/2 189.1122 assigned to C₉H₁O₄.

TABLE VI

DIAGNOSTIC IONS IN E.I.-M.S. OF METHYLATED DIGLYCOSYLALDITOLS FOR THE PRODUCIS (IAI-2L AND IIAI-4L) FROM GL-PI AND -PII

Fraction	Fragment	Diglycosylalditol	E.im.s.	E.im.s. [m/z (relative abundance)	abundance)]			!	
			cA_I	cA_2	aJ_1	aJ ₂	cbA_I	cbA_2	abJ ₂
IA1-2L	15	HexA→Rha→Rha-ol- <i>I-d</i>	221	189	266	206	395	363	
IIA1-4L	16	HexA→Rha→Rha-ol-1-d	(21.0) 221	(100) 189	(7.0)	(88.0) 206	(3:0) 395	(10.0) 363	380
			(18.0)	(100)	į	(12.0)	(4.0)	(8.0)	(2.0)
	17	HexA→Rha→Rha-ol-1-d	221	189	5 90	506	395	363	380
			(20.0)	(100)	(1.0)	(78.0)	(2.0)	(8.0)	(1.0)

sorbed fractions on DEAE-Sephadex, and IA1-2L and IIA1-4L mainly contained 2-linked Rha. In g.l.c.-m.s. (Table VI), IA1-2L and IIA1-4L also gave fragments (15 from IA1-2L, and 16 and 17 from IIA1-4L). In c.i.-m.s., these fragments were not detected because of the low sensitivity. The e.i.-m.s. data suggested that these fragments were HexA-Rha-Rha-ol-1-d. In g.l.c., 15 and 17 had the same retention times, whereas 16 was eluted faster than 15 and 17. Although the glycosidic linkages in 15-17 could not be deduced, it was assumed that either the glycosidic linkages or the HexA component in 15 and 17 differed from those in 16.

Digestion of GL-PIV with endo- α - $(1\rightarrow 4)$ -polygalacturonase. — Previous results suggested that GL-PIV contained a large polygalacturonan moiety and a small rhamnogalacturonan moiety, hence, it was digested with endo- α - $(1\rightarrow 4)$ -polygalacturonase. Elution of the products from Sephadex G-50 gave a small proportion of a fraction (PG-1) in the void volume, an intermediate fraction (PG-2), and a fraction (PG-3) of the lowest molecular weight (Fig. 4). PG-1-2 contained Rha, Ara, Gal, and Glc in the molar ratios 0.1:trace:1.0:0.07 and 0.3:trace:1.0:0.3, respectively. PG-2 also contained a large proportion of GalA and a small proportion of GlcA. PG-3 comprised mainly GalA, in addition to a small proportion of Rha, Ara, and Gal in the molar ratios trace:0.2:1.0. These results suggested that PG-1 was attached to PG-2 and PG-3 through a $(1\rightarrow 4)$ - α -D-galacturonan moiety.

Analysis of the products of enzymic digestion of GL-PIV. — PG-1–2 were each methylated, then carboxyl-reduced with sodium borodeuteride, and the products were converted into the alditol acetates. Methylation analysis (Table VII) showed that PG-1 mainly contained terminal, 6-linked, and 4,6-disubstituted Gal, and 4-linked Glc. PG-2 contained large proportions of terminal and 4-linked GalA in addition to terminal Gal. PG-1 also contained small proportions of 2-linked and 2,4-disubstituted Rha, and 2,4-branched GalA, whereas PG-2 comprised 2- and

Fig. 4. Gel filtration on Sephadex G-50 of the products from GL-PIV after digestion with endo- α - $(1\rightarrow 4)$ -polygalacturonase: \bullet , carbohydrate (490 nm); \blacktriangle , uronic acid (520 nm).

TABLE VII

METHYLATION ANALYSIS OF PRODUCTS FROM GL-PIV BY ENDO- α -(1 \rightarrow 4)-POLYGALACTURONASE DIGESTION

Glycosyl	Position of	Position of		Compo	sition (r	nol %)	
residue	OMe groups	deuterium	glycosidic linkages	PG-1ª	PG-2ª	PG-31	H ^b PG-3L ^b
Ara	2,3,5		terminal (furanosyl)	n.d.c	0.4	n.d.	n.d.
	2,3,4		terminal (pyranosyl)	2.2	0.8	n.d.	n.d.
Rha	2,3,4		terminal	n.d.	n.d.	n.d.	n.d.
	3,4		2	5.7	4.3	n.d.	n.d.
	2,4		3	n.d.	1.8	n.d.	n.d.
	3		2,4	0.9	4.1	n.d.	n.d.
Fuc	2		3,4	n.d.	4.5	n.d.	n.d.
Gal	2,3,4,6		terminal	9.7	8.5	7.2	12.1
	2,3,6		4	3.5	n.d.	1.4	n.d.
	2,4,6		3	7.0	n.d.	n.d.	n.d.
	2,3,4		6	9.9	6.6	11.1	n.d.
	3,6		2,4	n.d.	3.8	n.d.	n.d.
	2,3		4,6	12.6	3.2	n.d.	3.1
	2,4		3,6	6.7	2.1	n.d.	n.d.
	2 3		3,4,6	5.0	1,3	n.d.	n.d.
	3		2,4,6	1.4	0.6	n.d.	n.d.
GalA	2,3,4	$6,6-d_2$	terminal	n.d.	13.3	n.d.	n.d.
	2,3	$6,6-d_2$	4	1.9	28.6	n.d.	n.d.
	2	$6,6-d_2$	3,4	n.d.	5.4	n.d.	n.d.
	3	$6,6-d_2$	2,4	0.2	3.8	n.d.	n.d.
	1,2,3,5,6	$1,6,6-d_3$	4 (reducing terminal)			n.d.	11.0
	2,3,4,6	6,6-d,	terminal			43.3	30.3
	2,3,6	$6,6-d_{2}$	4		1	34.6	43.5
GlcA	2,3,4	$6,6-d_{2}$	terminal	7.0	2.0	n.d.	n.d.
	2,3	$6,6-d_2$	4	4.7	n.d.	n.d.	n.d.
Glc	2,3,4,6		terminal	7.7	n.d.	n.d.	n.d.
	2,3,6		4	8.8	3.8	n.d.	n.d.
	2,6		3,4	2.9	1.2	n.d.	n.d.
	4,6		2,3	2.3	n.d.	n.d.	n.d.

Samples were methylated, carboxyl-reduced with sodium borodeuteride in tetrahydrofuran—ethanol, and then acetylated. Samples were reduced with carbodi-imide and sodium borodeuteride in deuterium oxide, methylated, and then acetylated. Not detected.

3-linked Rha, 2,4-disubstituted Rha, 3,4-disubstituted Fuc, and 3,4- and 2,4-disubstituted GalA.

PG-3 was carboxyl-reduced with sodium borodeuteride in the presence of a water-soluble carbodi-imide, and the product was fractionated on Bio-gel P-2 (data not shown) into equal proportions of material of high (PG-3H) and low molecular weight (PG-3L). PG-3H and PG-3L were each reduced with sodium borodeuteride and then methylated. Methylation analysis (Table VII) revealed large proportions of terminal and 4-linked GalA. PG-3H also contained 6-linked Gal, whereas PG-3L comprised 4-linked galactitol-1,6,6- d_3 and terminal Gal. G.l.c.-m.s. (Table VIII and IX) suggested that PG-3L contained GalA-(1 \rightarrow 4)-GalA (19), GalA \rightarrow Rha \rightarrow GalA (21), and GalA-(1 \rightarrow 4)-[GalA-(1 \rightarrow 2)-GalA] (22). PG-3L also contained Gal-

TABLE VIII

DIAGNOSTIC IONS IN C.L.- AND E.L.-M.S. OF METHYLATED MONOGLYCOSYLALDITOLS FROM PG-3L

Fragment	Fragment Monoglycosylaldisol	C.i. (relative abundance)	e abund	ance)			E.i. (re	E.i. (relative abundance)	undance					
		+(H+W)	aJ_2	aJ_2OH_2	bA_I	bA_2	aJ_I	aJ_2	bA_I	bA_2	bA_3	ald		
81	Gal-(1→4)-Rha-ol- <i>I-d</i>	242	206	224	219	187	266		219	187	155	134		382
19	GalA-(1→4)-GalA-ol- <i>1-d</i>	(1.9) 476 (19.0)	(11.0) 238 (16.0)	(69.0) 256 (69.0)	(21.0) 221 (66.0)	(4/.0) 189 (100)	(5.0) 298 (17.0)	(4/.0) 238 (100)	(17.0) 221 (54.0)	(100) (100)	(6.0) 157 (61.0)	(22.0) 134 (33.0)	(0.7) 341 (2.0)	(1.0) 384 (2.0)
TABLE IX														
DIAGNOSTIC	DIAGNOSTIC E.IM.S. IONS OF METHYLATED DIGLYCOSYLALDITOLS FROM PG-3L	D DIGLYCOS'	YLALDITC	LS FROM	PG-3L									
Fragment	Diglycosylalditol	E.	im.s. fr	agment ic	E.im.s. fragment ions [m/z (relative abundance)]	lative ab	undance							
		aJ_1		aJ_2	cA_I	cA_2	abJ_1	abJ_2		cbA_I	cbA_2			
20	Rha→Rha→GalA-ol- <i>l-d</i>			38		157		412	,		331			
21	GalA→Rha→GalA-ol- <i>l-d</i>	(8.0) 1-d 298 (5.0)		(73.0) 238 (44.0)	(16.0) 221 (33.0)	(31.0) 189 (100)		(3.0) (3.0)		395 (2.0)	(2.0) 363 (2.0)			i
		bA_I		bA_2	<i>b'A</i> ₁	<i>b'A</i> ₂	abJ_1	abJ_2		ab'J,	$ab'J_2$	ald		
22	GalA-(1 ✓ 4)	(10)	221 1 (100) (189 (9.0)	221 (100)	189 (9.0)	504 (8.0)	444 (1.0)		504 (8.0)	4 (1.0)	341 (17.0)		296 (10.0)
	GalA-ol- <i>I-d</i>	<i>p-1-</i>												
	2)													
	GalA-(1													

 $(1\rightarrow 4)$ -Rha (18) and Rha \rightarrow Rha \rightarrow GalA (20). The endo- α -polygalacturonase from A. niger hydrolyses polygalacturonic acid into mono- to tri-galacturonides²⁵. Since the enzyme cannot hydrolyse such linkages as GalA \rightarrow Gal and GalA \rightarrow Rha, the enzyme preparation might be contaminated with a trace of exo-galacturonidase.

DISCUSSION

The potent anti-complementary polysaccharides, GL-PI, GL-PII, and GL-PIV, isolated from the leaves of *P. ginseng*, have been characterised¹ as acidic pectic polysaccharides. GL-PI and GL-PII contained Rha (2-linked and 2,4-disubstituted) and 4-linked GalA in the molar ratios of 30.9:38.6 and 30.9:30.8, respectively, and the backbones of GL-PI and GL-PII were shown to be mainly rhamnogalacturonan regions with little galacturonan. GL-PIV contained much more 4-linked GalA than 2-linked and 2,4-disubstituted Rha, and the backbone was shown to be rich in the galacturonan. The backbones were shown to be substituted¹ by neutral side-chains mostly attached at position 4 of 2-linked Rha or positions 2 or 3 of 4-linked GalA.

On β -eliminative degradation, GL-PI and -PII gave neutral (IN and IIN) and acidic (IA and IIA) fractions of which the former contained neutral side-chains (INH, IINH, 2-5, 7, 8, and 10) and the fragments (1 and 6) derived from the backbones. Structural analysis suggested that the rhamnogalacturonan cores of GL-PI and -PII were comprised of dirhamnosyl units because Rha- $(1\rightarrow 2)$ -Rha-ol-1-d (1, 6, 11, and 13) were detected in the products.

GL-PI and -PII possessed Rha, Ara, and Gal as the neutral side-chains attached to position 4 of 2-linked Rha in the rhamnogalacturonan cores (23). GL-PI and -PII had Gal-(1 \rightarrow 6)-Gal as the side chain originally attached to position 4 of GalA as Gal-(1 \rightarrow 6)-Gal-(1 \rightarrow 4)-GalA-(1 \rightarrow because Gal-(1 \rightarrow 6)-Gal-ol-1-d was released by β -eliminative degradation. Some pectic polysaccharides contain^{4,5,26,27} the sequence \rightarrow 4)-GalA-(1 \rightarrow 4)-Rha-(1 \rightarrow , and it has been proposed^{7,15,26,27} that some galactosyl chains are attached to position 4 of GalA which, in turn, is attached to position 4 of 2-linked Rha in the rhamnogalacturonan core. Therefore, Gal-(1 \rightarrow 6)-Gal in GL-PI and GL-PII is attached to the rhamnogalacturonan cores in the same

23 R=Rha, Ara, or Gal

manner (24). GL-PI and -PII also contained long $(1\rightarrow 6)$ -linked galactosyl chains in addition to small proportions of $(1\rightarrow 4)$ -linked glucosyl chains. The reducing terminals of these side chains could not be detected, and it is not known whether they were attached to position 4 of 2-linked Rha in the rhamnogalacturonan cores either directly (23) or through 4-linked GalA (24).

The acidic fractions (IA and IIA) from GL-PI and -PII mainly contained the rhamnogalacturonan core and $(1\rightarrow6)$ -linked galactosyl chains. The structural analysis of the neutral side-chains in anti-complementary pectic polysaccharides, AR-2IIa–IId, from Angelica acutiloba indicated²⁷ that the acidic fractions derived by β -eliminative degradation are formed by incomplete β -elimination. Furthermore, the structural analysis of the acidic fractions also suggests²⁷ strongly the presence of galactosyl chains which were attached originally to GalA as in \rightarrow 4)-GalA- $(1\rightarrow(Gal)_n$ - $(1\rightarrow4)$ -GalA- $(1\rightarrow)$ -Ga

Endo- α -(1 \rightarrow 4)-polygalacturonase degraded GL-PIV into PG-1 \rightarrow 3. Methylation analysis showed that PG-3 was mainly comprised of oligogalacturonides, indicating that PG-1 and PG-2 were attached to each other through galacturonans that were degraded to oligogalacturonides by the enzyme. PG-1 mainly contained rhamnogalacturonan core as the backbone, to which were attached galactosyl chains that comprised terminal, 6-linked, and 4,6-disubstituted Gal, and (1 \rightarrow 4)-linked glucosyl chains. PG-2 contained a large proportion of (1 \rightarrow 4)- α -galacturonan partially branched at position 2 or 3, in addition to a small proportion of the rhamnogalacturonan core and various galactosyl chains. Of the galactosyl chains, about two-thirds were attached to position 2 or 3 of galacturonan and the remainder to the rhamnogalacturonan core.

It has been proposed²⁸ that the anti-complementary activities of the "ramified" regions from pectic polysaccharides (AR-2IIa-IId) of A. acutiloba are expressed by a combination of the rhamnogalacturonan core and $(1\rightarrow6)$ -linked galactosyl chains, and suggested⁷ that $(1\rightarrow6)$ -linked galactosyl chains might be essential for the expression of the activity. GL-PI and GL-PII consisted mainly of $(1\rightarrow6)$ -linked galactosyl chains as the side chain and, therefore, may express anticomplementary activity in a manner similar to that of AR-2IIa-IId. However, GL-PIV contains $(1\rightarrow4,6)$ -linked galactosyl chains in addition to short galactosyl chains consisting of 3-, 4-, and 6-linked Gal. Pectin²⁹ from the fruit of Zyziphus jujuba, which has been reported³⁰ to have no anti-complementary activity, mainly contains²⁹ 4-linked Gal as neutral sugar. An anti-complementary inactive arabinogalactan (AGIIb-2) has also been isolated³¹ from A. acutiloba, which consists of a $(1\rightarrow4)$ -galactan possessing $(1\rightarrow6)$ -linked galactosyl side-chains at position 6 (unpublished data). The relationship between structure and activity of GL-PIV must await further study.

ACKNOWLEDGMENTS

We thank Mrs. B.-X. Wang and D.-M. Xu (Academy of Traditional Chinese Medicine and Material Medica of Jilin Province, China) for the supply of Ginseng leaves, and Ms. A. Nakagawa and Ms. C. Sakabe for assistance with g.l.c.-m.s. A part of this work was supported by Tsumura Co. Ltd., Tokyo.

REFERENCES

- 1 Q.-P. GAO, H. KIYOHARA, J.-C. CYONG, AND H. YAMADA, Carbohydr. Res., 181 (1988) 175-187.
- 2 H. YAMADA, H. KIYOHARA, J.-C. CYONG, AND Y. OTSUKA, Carbohydr. Res., 159 (1987) 275-291.
- 3 H. YAMADA, S. YANAHIRA, H. KIYOHARA, J.-C. CYONG, AND Y. OTSUKA, *Phytochemistry*, 26 (1987) 3269–3275.
- 4 H. YAMADA, H. KIYOHARA, AND Y. OTSUKA, Carbohydr. Res., 170 (1987) 181-191.
- 5 H. YAMADA, K.-S. RA, H. KIYOHARA, J.-C. CYONG, AND Y. OTSUKA, *Carbohydr. Res.*, 189 (1989) 209–226.
- 6 H. KIYOHARA, J.-C. CYONG, AND H. YAMADA, Carbohydr. Res., 193 (1989) 193-200.
- 7 H. KIYOHARA, J.-C. CYONG, AND H. YAMADA, Carbohydr. Res., 193 (1989) 201-214.
- 8 J. F. THIBAULT AND C. MERCIER, J. Solid-Phase Biochem., 2 (1977) 295-304.
- 9 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350-356.
- 10 N. Blumenkrantz and G. Asboe-Hansen, Anal. Biochem., 54 (1973) 484-489.
- 11 Y. INOUE, A. YAMAMOTO, AND K. NAGASAWA, Carbohydr. Res., 161 (1987) 75-90.
- 12 W. E. TREVELYAN, D. P. PROCTER, AND J. S. HARRISON, Nature (London), 166 (1950) 444-445.
- 13 L. HOUGH, J. K. N. JONES, AND W. H. WADMAN, J. Chem. Soc., (1950) 1702-1706.
- 14 T. M. JONES AND P. ALBERSHEIM, Plant Physiol., 49 (1972) 926-936.
- 15 H. KIYOHARA AND H. YAMADA, Carbohydr. Res., 187 (1989) 117-129.
- 16 W. S. YORK, A. G. DARVILL, M. McNeil, T. T. STEVENSON, AND P. ALBERSHEIM, Methods Enzymol., 118 (1986) 3-41.
- 17 R. E. TAYLOR AND H. E. CONRAD, Biochemistry, 11 (1972) 1383-1388.
- 18 S. HAKOMORI, J. Biochem (Tokyo), 55 (1964) 205-208.
- 19 H. RAUVALA, Carbohydr. Res., 72 (1979) 257-260.
- T. J. WAEGHE, A. G. DARVILL, M. McNeil, and P. Albersheim, Carbohydr. Res., 123 (1983) 281–304.
- 21 Z. DISCHE, Methods Carbohydr. Chem., 1 (1962) 478-481.
- 22 H. KIYOHARA, H. YAMADA, AND Y. OTSUKA, Carbohydr. Res., 167 (1987) 221-237.
- 23 O. S. CHIZHOV, V. I. KADENTSEV, A. A. SOLOVYOV, P. F. LEVONOWICH, AND R. C. DOUGHERTY, J. Org. Chem., 41 (1976) 3425–3428.
- 24 N. K. KOCHETKOV AND O. S. CHIZHOV, Adv. Carbohydr. Chem. Biochem., 21 (1966) 39-93.
- 25 J. F. THIBAULT AND C. MERCIER, J. Food Biochem., 2 (1978) 379-393.
- 26 H. KIYOHARA AND H. YAMADA, Carbohydr. Res., 193 (1989) 173-192.
- 27 H. KIYOHARA AND H. YAMADA, Carbohydr. Res., 187 (1989) 255–265.
- 28 H. KIYOHARA, J.-C. CYONG, AND H. YAMADA, Carbohydr. Res., 182 (1988) 259-275.
- 29 N. SHIMIZU AND M. TOMODA, Chem. Pharm. Bull., 31 (1983) 499-506.
- 30 H. Yamada, T. Nagai, J.-C. Cyong, Y. Otsuka, M. Tomoda, N. Shimizu, and K. Shimada, Carbohydr. Res., 144 (1985) 101–111.
- 31 H. KIYOHARA, H. YAMADA, J.-C. CYONG, AND Y. OTSUKA, J. Pharmacobio-Dyn., 9 (1986) 339-346.